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Impurity physics

some medium

impurity

Quantum impurities Paradigm of many-body physics

‣ appear in many flavors in condensed matter physics

‣ relatively simple system from many-body perspective: allow to advance theory in 
‘controlled way’

‣ system on the verge from few- to many-body physics
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Impurity experiments with ultracold atoms

[in continuum]

Mainly studied experimentally in cold atoms so far:

↓-atom

↑-atom

ideal Fermi gas

Fermi polaron
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RS, ENSS, PRA  83 (2011)
MASSIGNAN, BRUUN, EPJD 65 (2011)

RS, PHD THESIS (2013)

KOHSTALL ET AL., NATURE 485 (2012)

RF response - theory vs experiment

3D:

ZÖLLNER, BRUUN, PETHICK, PRA 83, 021603 (2011)
RS, ENSS, PIETILA, DEMLER, PRA  85, 021602 (2012)
KOSCHORRECK ET AL., NATURE 485 (2012)
NGAMPRUETIKORN, LEVINSEN, PARISH EPL 98 (2012)

2D:

mobile impurity

REVIEW: MASSIGNAN, ZACCANTI, BRUUN  REP. PROG. PHYS. 77, 034401 (2014)

SCHIROTZEK ET AL., PRL 102 (2009)
KOHSTALL ET AL., NATURE 485 (2012)
KOSCHORRECK ET AL., NATURE 485 (2012)
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Bose gas / superfluid

impurity

what happens if medium is Bose gas?

Bose polaron

This talk: The Bose Polaron
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electron

ion lattice
phonon

bath

Fröhlich Hamiltonian

low-energy 
description

lattice polaron Froehlich polaron

electron

FRÖHLICH, ADV. PHYS. 3, 325 (1954)

impurityphonons impurity-phonon interaction

a paradigm condensed matter model:

A cond-mat motivation: The Froehlich polaron
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The Fröhlich polaron

Fröhlich Hamiltonian FRÖHLICH, ADV. PHYS. 3, 325 (1954)

‣ impurity dressed by phonon cloud becomes the ‘Fröhlich polaron’

‣ enhanced effective mass, renormalized energy SEE E.G. MILLER ET AL. PHYS. REV. 127 (‘62)

‣ strong interactions: variational wave function 
LANDAU, PEKAR, JETP 18 (1948); FEYNMAN, COHEN, PHYS. REV. 102 (1956)

self-localization?
m⇤ =

m

1� ↵/6
1

large

perturbation theory:

“Landau Pekar polaron”

‣ yields energy smaller than pert. theory at strong coupling, further evidence of self-localization 

‣ describes localized particle
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Strong repulsion: The “bubble polaron”

Helium 4 “original application”: impurity in liquid Helium
at strong repulsive interactions medium can get 
distorted

2

FIG. 1: Numerical results for the normalized boson density
(blue shading) and un-normalized impurity wavefunction (red
dashed line). Parameter values [see Eqs. (3) and (8)]: (a)
� = 25 and ↵ = 10�9, (b) � = 25 and ↵ = 10�5, (c) � = 25
and ↵ = 101, (d) � = 5⇥ 104 and ↵ = 103.
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potential is an attractive Yukawa potential of range ⇠. It
can cause self-localization when ⇠ exceeds the impurity
extent, which is comparable to [13]
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the above description predicts self-localization [13]. Note
that the impurity extent R
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= ⇠/� can be significantly
smaller than ⇠, making this polaron a sub-coherence
length structure. The binding energy, proportional to
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then significantly exceeds µ
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. When scaled by E
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and
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, impurity observables in the Landau-Pekar regime de-
pend only on the dimensionless coupling strength � [13].

Bubble polaron: When a
IB

grows su�ciently to ex-
pel the BEC from the impurity’s vicinity [Fig. 1(c) and
(d)], a Bogoliubov procedure should expand around the
deformed BEC. However, a bubble description such as
Kuper’s model of electron bubbles in helium is a sim-
pler starting point [10]. With complete BEC and im-
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BEC permeability: The radical change in BEC-
impurity overlap seen in Fig. 1(a) - (d) is due to a BEC
“sti↵ness” arising because it costs kinetic and interaction
energy to move �N
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then quantifies the relative importance of the displace-
ment energy cost to the overlap energy gain of self-
localization. We refer to � as the BEC-impurity “perme-
ability”. In the Landau-Pekar regime, a direct analytical
evaluation yields |�⇢

B

(r = 0) /⇢| =
�
4
p
2/3

p
⇡
�
��1 =

1.064��1. Thus, � � 1 implies Landau-Pekar conditions
where the repulsion is insu�cient to overcome the BEC
sti↵ness and displace the bosons noticeably [Fig. 1(a)].
A gradual increase in a

IB

then expels the bosons sig-
nificantly when � ⇠ 1 [Fig. 1(b)], and enters the large-
depletion bubble limit [Fig. 1(c) and (d)] when � ⌧ 1.
General case: A more general ground state treatment,

encompassing the Landau-Pekar and bubble regimes as
limits, is based on the strong coupling approximation of a
many-body product state. Minimizing the energy while
requiring the respective boson and impurity wavefunc-
tions  (r) and � (r) to be normalized gives two coupled
Gross-Pitaevskii equations
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deformed BEC. However, a bubble description such as
Kuper’s model of electron bubbles in helium is a sim-
pler starting point [10]. With complete BEC and im-
purity separation [Fig. 1(d)] the impurity, trapped in a
self-created spherical cavity of radius R

c

and volume V
c

,

has wavefunction � (r) =
p
⇡R

c

�1
sin (⇡r/R

c

) /r. Ne-
glecting surface tension, the system energy di↵erence E

c

with and without impurity is the impurity kinetic energy
⇡2~2/

�
m

I

R2
c

�
plus the energy cost of making the cavity,

PV
c

, where P = �
BB

⇢2/2 is the BEC pressure. Hence

E
c

(R
c

) =
⇡2~2
m

I

R2
c

+
8⇡2

3

~2a
BB

m
B

⇢2R3
c

. (5)

The minimization @E
c

/@R
c

= 0 yields the expected

cavity radius R
c

=
⇥
4 (m

I

/m
B

) ⇢2a
BB

⇤�1/5
, and

the impurity energy E
c

= (5/3)
�
⇡2~2/

⇥
m

I

R2
c

⇤�
=

�
5⇡/211/5

�
(m

B

/m
I

)3/5 µ
B

/
hp

⇢a3
BB

i2/5
.

BEC permeability: The radical change in BEC-
impurity overlap seen in Fig. 1(a) - (d) is due to a BEC
“sti↵ness” arising because it costs kinetic and interaction
energy to move �N

B

=
��R d3r [⇢

B

(r)� ⇢]
�� bosons away

from the impurity. Estimating the interaction energy
cost as E

x

= �N
B

µ
B

and using the predicted displaced
boson number from [27], �N

B

= |�
IB

/�
BB

| (valid in
the Landau-Pekar and crossover regimes but not in the
bubble regime), gives E

x

= |�
IB

/�
BB

|µ
B

. The ratio

� =
E

x

E
o

=

"
4⇡⇢a3

IB

✓
1 +

m
I

m
B

◆3 ✓
m

B

m
I

◆2
#�1

(6)

then quantifies the relative importance of the displace-
ment energy cost to the overlap energy gain of self-
localization. We refer to � as the BEC-impurity “perme-
ability”. In the Landau-Pekar regime, a direct analytical
evaluation yields |�⇢

B

(r = 0) /⇢| =
�
4
p
2/3

p
⇡
�
��1 =

1.064��1. Thus, � � 1 implies Landau-Pekar conditions
where the repulsion is insu�cient to overcome the BEC
sti↵ness and displace the bosons noticeably [Fig. 1(a)].
A gradual increase in a

IB

then expels the bosons sig-
nificantly when � ⇠ 1 [Fig. 1(b)], and enters the large-
depletion bubble limit [Fig. 1(c) and (d)] when � ⌧ 1.
General case: A more general ground state treatment,

encompassing the Landau-Pekar and bubble regimes as
limits, is based on the strong coupling approximation of a
many-body product state. Minimizing the energy while
requiring the respective boson and impurity wavefunc-
tions  (r) and � (r) to be normalized gives two coupled
Gross-Pitaevskii equations

µ
B

 (r) = �~2r2

2m
B

 (r) + �
BB

| (r)|2  (r)

+�
IB

|� (r)|2  (r) (7)

✏
I

� (r) = �~2r2

2m
I

� (r) + �
IB

| (r)|2 � (r) ,

BLINOVA, BOSHIER, TIMMERMANS, PRA 88 (2013)

[not taken into account in Froehlich Hamiltonian]

Landau-Pekar regime interaction

medium density

polaron

Bubble polaron

KUPER, PHYS. REV. 122 (1961)

Let’s do quantum simulation!Realizable with ultracold atoms!

Yet there are challenges!

superfluid + strong interactions:
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The Bose polaron with ultracold atoms

impurity in Bose gas: Bose polaron

bosons

impurity

weakly interacting BEC: Bogoliubov approximation for BEC

mean-field fluctuations

e.g. take strongly imbalanced mixture of ultracold atoms

"Fröhlich term"

at weak coupling: Fröhlich Hamiltonian

MF energy shift
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Bose poloron at strong coupling

"Fröhlich terms"

strong effective phonon-impurity interaction wanted
HEISELBERG ET AL., PRL 85 (2000)
CUCCHIENTTI, TIMMERMANS, PRL 96 (2006)
KALAS, BLUME, PRA 73 (2006)
WANG, PRL 96 (2006)
ENSS, ZWERGER, EPJB 68 (2009)
TEMPERE, OBERTHALER ET AL., PRB 80 (2009)

CASTEELS ET AL., PRA 83,84,86 (2011)
CASTEELS, CAUTEREN, TEMPERE,DEVREESE, LASER PHYS. 21 (2011)
CASTEELS, TEMPERE, DEVREESE, PRA 84 (2011)
CASTEELS, TEMPERE, DEVREESE, PRA 86 (2012)
DASENBROOK, KOMNIK, PRB 87 (2013)
BLINOVA, BOSHIER, TIMMERMANS, PRA 88 (2013)
...
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Bose poloron at strong coupling

"Fröhlich terms"

‘mean-field replacement’ invalid!

strong effective phonon-impurity interaction comes at a prize

1. microscopic attraction needed 

r

2. pairing fluctuations become relevant

MF approach & Fröhlich Hamiltonian becomes invalid

in RG language: Froehlich: weak coupling RG fixed point
                      cold atoms at Feshbach resonance: strong coupling RG fixed point

Monday, June 30, 14
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Our work: Bose polaron from a truly attractive model

simple quantum field-theory approach

assume homogeneous, weakly interacting BEC

mean-field fluctuations

Bogoliubov approximation for bosons: keep all terms up to quadratic in    , 

Unlike previous approaches, we keep pairing fluctuations "Fröhlich terms"

RATH, RS, PRA 88 (2013)

bosons

impurity
attractive interaction
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The Question.

What is the spectrum of the model?

condensed matter

energy of polaron, MFT
energy reduction 
via interaction w/ phonons

f

cold atoms

strict analogy

quantum simulation

Quantity to address this question: Spectral function 
(gives access to radio-frequency response etc...)

A
pol

(�,p) = �2 ImGR(�,p)

B

a

exploiting
Feshbach resonance

?

do cold atoms forget underlying 
microscopic physics?
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T-matrix approximation

impurity spectral function                                       from Dyson equation

= + ⌃ 

self-energy

full Green’s function:

SEE ALSO FOR FERMIONS: RS, ENSS, PRA  83 (2011)

A
pol

(�,p) = �2 ImGR(�,p)

⌃ = �� + �� self-energy:

depleted bosons

resummed perturbation theory

�� = + �� T-matrix equation:

boson

impurity

prerequisite: recover exact two-body solution [unlike previous works]

Bog. quasiparticle
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Result for momentum resolved spectral function

6

Although it remains the stable ground state, the at-
tractive polaron loses spectral weight in favor of a sec-
ond feature which emerges at positive energies [cf. Figs. 4
and 5]. This “high-energy excitation” absorbs most of the
spectral weight lost by the attractive polaron. Its positive
energy indicates that it corresponds to a quasiparticle
interacting with the Bose gas via an effective repulsion,
hence it is coined the repulsive Bose polaron in the follow-
ing. The appearance of this repulsive branch has strong
similarities to the “upper branch” present in the case of
a two-component Fermi gas [60–62] and in particular the
repulsive Fermi polaron [8, 63, 64]. Similarly to the lat-
ter case, the repulsive Bose polaron exists only at positive
interspecies coupling and becomes a well-defined quasi-
particle only for moderate to small values of the interac-
tion constant a

� 

as can be seen from its width � shown
in Fig. 4 (c). The appearance of the repulsive polaron
suggests a simple physical picture where the impurity in-
teracts with the bosons via a positive scattering length,
resulting in a positive interaction energy. Indeed, we find
that the energy of the repulsive polaron is well approx-
imated by the mean field result E

rep

⇡ g

� 

⇢0 wherever
the quasiparticle peak is well defined. This picture, how-
ever, neglects the physical origin of the positivity of the
scattering length which is the presence of a bound state
in the spectrum. Indeed, as a

� 

increases towards the
Feshbach resonance, the corresponding lifetime rapidly
becomes so short that a detailed experimental study of
strongly repulsive polarons will be a major challenge.

In Appendix A we argue that when crossing the Fes-
hbach resonance, there is actually a smooth crossover of
the ground state from a polaronic to a bound molecule
state, a picture which emerges naturally when consider-
ing the problem using a two-channel model instead of
the one-channel model discussed here. Essentially, this
crossover, which stands in clear contrast to the case of
the Fermi polaron [54, 55, 65, 66], finds its origin in a
hybridization of the molecular and the polaronic state
due to the presence of the condensate [67]. This intu-
itive picture is corroborated by the fact that the effective
mass of the attractive polaron crosses over from ↵m

�

,
the mass of a single impurity, to (↵+ 1)m

�

which is the
mass of a molecule made up of the impurity and one bo-
son [cf. Fig. 5 (b)].

The behavior of the quasiparticles as a function of mo-
mentum, shown in Fig. 3, is qualitatively different on
the two sides of the Feshbach resonance. For a

� 

> 0,
the attractive polaron’s momentum dependent effective
mass increases with increasing momentum and its dis-
persion eventually follows the dispersion of the molecu-
lar state which reflects the polaron-to-molecule crossover
also in the momentum domain. The onset of the scatter-
ing continuum happens at p

2
/2↵m

�

for p < ↵

p
m

�

g

��

n

(within the considered approximation, this statement
is exact and reflects Landau’s critical velocity, cf. Ap-
pendix C) and crosses over to a molecule-like dispersion
⇠ p

2
/2(↵ + 1)m

�

for larger momenta. The “dispersion
law” of the continuum onset is determined by the on-

n�1/3p

⌦
/⌦

0

(a)

n�1/3p

⌦
/⌦

0

(b)

FIG. 3: Impurity spectral function A

pol

(⌦,p) as a function
of frequency and momentum for (a) n

1/3
a

�1
� = 1 and (b)

n

1/3
a

�1
� = �5. In both graphs, n

1/3
a�� = 0.1. Solid line:

free impurity dispersion. Dashed line: free molecule like dis-
persion. Dash-dotted line: dispersion according to the effec-
tive mass of the attractive polaron at p = 0. For positive
a� , the attractive polaron peak gradually bends away from
its dispersion at vanishing momentum, reflecting an increase
in the momentum-dependent effective mass. At negative a� ,
the effective mass stays approximately constant as a function
of momentum.

B

a
Feshbach resonance

almost “standard” repulsive polaron 
‣ at positive energy

‣ enhanced effective mass

‣ finite lifetime!

‣ largely reduced quasi-particle weight

“new” attractive polaron
‣ actual ground state at negative energies!

‣ interacts attractively with BEC

‣ enhanced effective mass

‣ cannot be found in previous approaches

two coherent quasi-particle excitations!unlike condmat:

RATH, RS, PRA 88 (2013)

previous “quantum simulation proposals”

e
n
e
rg

y

momentum
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Energy spectrum for impurity at rest

5

with the full retarded impurity Green’s function

G

R

 

(⌦,p) =

1

⌦� p

2

2m 
� ⌃

 

(⌦,p) + i0

+
(16)

as obtained from Dyson’s equation depicted in Fig. 1 (a).
Using our conventions, the spectral function fulfills the
sum rule (2⇡)

�1
´
d⌦A

pol

(⌦,p) = 1 where the integra-
tion extends over all frequencies. As we already did up to
here, we will suppress the superscript R in the following
and the retardedness of propagators will be implied by
the use of the real frequency argument ⌦ ⌘ ! + µ

 

.
The excitation spectrum contained in the impurity

spectral function Eq. (15) is determined by the analytical
structure of the Green’s function Eq. (16) in the complex
frequency plane. While branch cuts correspond to an
incoherent continuum of excitations, poles are linked to
the existence of well-defined quasiparticles that can be
characterized by a small set of key quantities [41]: (i)
The quasiparticle dispersion relation E(p) is defined as
the solution of

E(p)� p

2

2m

 

� Re⌃
 

[E(p), p] = 0 , (17)

where in the isotropic case considered here quantities de-
pend only on the magnitude of the momentum p = |p|
(From here on the symbol p denotes the magnitude of
momentum and not the four-momentum). (ii) The (mo-
mentum dependent) spectral weight is given by

Z(p) =

1

1� @⌦Re⌃
 

[⌦, p]

�

�

�

�

⌦=E(p)

. (18)

(iii) The decay width is obtained from

�(p) = �Z(p) Im⌃

 

[E(p), p] (19)

and (iv) the momentum dependent effective mass reads

m

⇤
(p) =

p

@

p

E(p)

=

1/Z(p)

1
↵

+

1
p

@

p

Re⌃
 

[⌦, p]|
E(p)

. (20)

Eqs. (17)–(20) provide an accurate description of the
quasiparticle properties as long as the poles of the
Green’s function G

 

(⌦, p) in the complex frequency
plane are close to the real axis. If this condition is
violated, the interpretation of the poles as well-defined
quasiparticles starts to break down and the preciseness
of Eqs. (17)–(20) depends on how well one satisfies the
assumption that Im⌃

 

remains constant across the width
of the quasiparticle peak as well as the smallness of the
decay width compared to the quasiparticle energy.

We now turn to the analysis of the impurity’s spectral
function A

pol

given by Eqs. (15), (16), and (14). When
choosing ↵ = 1, as done for all plots in this article, we
are left with A

pol

as a function of four quantities: ⌦, p,
a

� 

and a

��

. We choose n

1/3
a

��

= 0.1 for the follow-
ing plots which is actually about one order of magnitude

stronger than what is typical for weakly interacting Bose
gases. While such strong interactions have actually been
reached in experiment [57–59] and do themselves lead to
interesting physics beyond the scope of this article, our
motivation for this large value is quite plain: it turns out
the dependence of the spectral properties on g

��

is very
weak. So, to make this dependence clearly visible in our
plots, we choose this somewhat exaggerated value.

�

n

1/3
a

� 

��1

⌦
/
⌦

0

FIG. 2: Impurity spectral function A

pol

(⌦,p = 0) in the non-
selfconsistent T-matrix approximation with n

1/3
a�� = 0.1.

Solid lines: weak coupling limit (valid for both branches) E ⇠
g� n. Dashed line: energy of the universal dimer in vacuum,
E

dim

⇠ �1/m�a
2
� . Here and in all following plots, zero-

width peaks have been given a small artificial width to be
visible on the graph.

In Fig. 2 we show the impurity spectral function cal-
culated using the NSCT approximation and evaluated at
vanishing momentum as a function of the dimensionless
quantities ⌦/⌦0 and (n

1/3
a

� 

)

�1, where ⌦0 = n

2/3
/m

�

.
The spectral function shows a continuous background for
positive frequencies ⌦ carrying little spectral weight and
is dominated by two sharply peaked features, one at pos-
itive and one at negative ⌦. The sharp feature appearing
at low energies can be interpreted as an attractive po-
laron. It is a sharp quasiparticle excitation giving rise to
a delta peak in the spectral function which carries most
of the spectral weight for large negative values of a

�1
� 

.
In this weak coupling regime we recover the perturba-
tive result for the polaron’s energy which asymptotically
obeys E

att

⇠ g

� 

n. Upon crossing the Feshbach reso-
nance where a

�1
� 

goes over to positive values, the attrac-
tive polaron evolves smoothly into a molecular bound
state which follows the energy of the universal dimer,
E

att

⇠ E

dim

= �a

�2
� 

(↵+ 1)/2↵m

�

.

MFT

bare dimer

scatt. 
continuum

energy of polaron, MFT

beyond MF / self-loc. etc

previous “quantum simulation proposals”

attractive polaron 
‣ stable ground state at all scattering lengths

OBSERVED AT WEAK COUPLING  PFAU GROUP [STUTTGART]: BALEWSKI ET AL., NATURE 502 (2013)

repulsive polaron 

[molecule formation]

‣ self-localization challenging to observe

‣ extremely unstable in strong-coupling regime!

inverse interaction strength

e
n
e
rg

y

RATH, RS, PRA 88 (2013)
smooth crossover to molecular state - hybridization 

- different from transition for Fermi polaron -
DISCUSSED IN CONTEXT OF B/F MIXTURES BY 

MARCHETTI, ... PARISH, PRB 78 (2008)
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Self-consistent T-matrix

�� = + �� 

⌃ = �� + �� 

So far: Non-selfconsistent T-matrix approach

bare impurity

Non-self-
consistent T-
matrix

‣ single boson taken out of condensate ‣ equivalent to simple variational wave function

impurity boson excited out of 
condensate

‣ captures very simple ‘entanglement’ between BEC and 
impurity 

BEC

impurity

BEC

impurity
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Self-consistent T-matrix

�� = + �� 

⌃ = �� + �� 

Selfconsistent T-matrix approach

full Green’s function!

self-consistent 
T-matrix RATH, RS, PRA 88 (2013)

‣  accounts for infinitely many virtual excitations of bosons out of the coherent 
condensate state

Non-selfconsistent: Selfconsistent: ‣ infinite number of bosons 
taken out of condensate -
way beyond product wave 
functions for BEC

‣ single boson taken out of condensate

SEE ALSO FOR FERMIONS: 
RS, ENSS, PRA  83 (2011)

‣  solved numerically using algorithm developed for functional renormalization group approach
     for RG flow of full spectral functions RS, ENSS, PRA  83 (2011)
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Self-consistent T-matrix - Results

unlike for fermions: 
simple variational wave functions 

not reliable for quantitative predictions for 
strong coupling Bose polaron

as for instance studied in LI AND DAS SARMA, ARXIV:1404.4054
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0

0.5

1

-20 -10 0 10

Z

�
n1/3a� 

��1

NSCT, a�� = 0
NSCT, a�� = 0.1

SCT, a�� = 0

(a)

1

1.2

1.4

1.6

1.8

2

-20 -10 0 10 20

m
⇤

�
n1/3a� 

��1

NSCT, a�� = 0
NCST, a�� = 0.1

SCT, a�� = 0

(b)

FIG. 5: (a) Quasiparticle weights for both branches (the lines
on the upper right of the graph correspond to the repulsive
polaron). (b) Effective mass of the attractive polaron. Pa-
rameters and line styles are as in Fig. 4.

expressed as

m

⇤
=

1� @⌦Re⌃
 

1
↵

� 1
↵+1@⌦Re⌃

 

�

�

�

�

E(p)

=

↵(↵+ 1)

Z + ↵

. (21)

One sees that the effective mass is strictly bounded
by the impurity and the molecule mass and follows a
smooth interpolation between the two as the scatter-
ing length is tuned across the resonance. This nicely
reflects the crossover of the polaron to a molecule de-
scribed in Appendix A. The quasiparticle weight Z and
the effective mass m

⇤ are shown as functions of a

�1
� 

in Fig. 5. One may also determine the momentum at
which the attractive polaron enters the excitation con-
tinuum at small negative a

� 

. In this regime the po-
laron always has an effective mass close to ↵m

�

such that
the polaron dispersion relation is well approximated by
E

att

(p) ⇡ g

� 

n+p

2
/2↵m

�

while the onset of the contin-
uum is exactly at p2/2(↵+1)m

�

(in contrast to the case of
a non-zero g

��

discussed above). Consequently, the two
intersect at p ⇡ p�4⇡(↵+ 1)

2
na

� 

. Finally, the energy
of the attractive polaron may be calculated analytically.
While the resulting expression is cumbersome, it permits
to obtain the leading correction to the universal dimer
energy which at small positive scattering lengths is given

by E

att

⇠ (�1/a

2
� 

� 8⇡a

� 

n)(↵+ 1)/2↵m

�

[93].

n

�1/3
p

⌦
/
⌦

0

FIG. 6: Spectral function A

pol

(⌦,p) for a�� = 0, all other pa-
rameters are as Fig. 3 (b). Note that here the continuum on-
set coincides with the dashed line indicating the free molecule
like dispersion. The point where the polaron peak acquires a
finite width is shifted accordingly.

The difference in the “dispersion” of the continuum on-
set depending on whether one assumes a finite g

��

or not
is in fact the only qualitative difference that can be seen
in the spectral function [cf. Fig. 6, where, in contrast to
Fig. 3 (b), the continuum onset coincides with the free
molecule dispersion marked by the dashed line]. As a con-
sequence, while there is a visible deviation in the crossing
between the attractive polaron and the continuum onset
at positive a

� 

, the relation (21) between Z and m

⇤ is
satisfied to a good approximation even for g

��

> 0. To
summarize, the influence of g

��

, in particular on quanti-
ties evaluated at vanishing momentum, is almost invisible
in spite of the very large value n

1/3
a

��

= 0.1 used in the
data shown before.

IV. SELFCONSISTENT T-MATRIX
APPROXIMATION

In the NSCT approach the backaction of the impurity
selfenergy is completely neglected since only bare impu-
rity Green’s functions appear on the right-hand side of
the T-matrix equation depicted in Fig. 1 (c). In this Sec-
tion we include this feedback by solving the Bose polaron
problem using a selfconsistent T-matrix approach where
the thin impurity line on the right-hand side of Fig. 1 (c)
becomes bold, i.e., the bare impurity propagator is re-
placed by its dressed counterpart determined by Dyson’s
equation. Motivated by our observation that the inclu-

Suppression of quasi-particle weight

attractive
polaron

RATH, RS, PRA 88 (2013)

6

Although it remains the stable ground state, the at-
tractive polaron loses spectral weight in favor of a sec-
ond feature which emerges at positive energies [cf. Figs. 4
and 5]. This “high-energy excitation” absorbs most of the
spectral weight lost by the attractive polaron. Its positive
energy indicates that it corresponds to a quasiparticle
interacting with the Bose gas via an effective repulsion,
hence it is coined the repulsive Bose polaron in the follow-
ing. The appearance of this repulsive branch has strong
similarities to the “upper branch” present in the case of
a two-component Fermi gas [60–62] and in particular the
repulsive Fermi polaron [8, 63, 64]. Similarly to the lat-
ter case, the repulsive Bose polaron exists only at positive
interspecies coupling and becomes a well-defined quasi-
particle only for moderate to small values of the interac-
tion constant a

� 

as can be seen from its width � shown
in Fig. 4 (c). The appearance of the repulsive polaron
suggests a simple physical picture where the impurity in-
teracts with the bosons via a positive scattering length,
resulting in a positive interaction energy. Indeed, we find
that the energy of the repulsive polaron is well approx-
imated by the mean field result E

rep

⇡ g

� 

⇢0 wherever
the quasiparticle peak is well defined. This picture, how-
ever, neglects the physical origin of the positivity of the
scattering length which is the presence of a bound state
in the spectrum. Indeed, as a

� 

increases towards the
Feshbach resonance, the corresponding lifetime rapidly
becomes so short that a detailed experimental study of
strongly repulsive polarons will be a major challenge.

In Appendix A we argue that when crossing the Fes-
hbach resonance, there is actually a smooth crossover of
the ground state from a polaronic to a bound molecule
state, a picture which emerges naturally when consider-
ing the problem using a two-channel model instead of
the one-channel model discussed here. Essentially, this
crossover, which stands in clear contrast to the case of
the Fermi polaron [54, 55, 65, 66], finds its origin in a
hybridization of the molecular and the polaronic state
due to the presence of the condensate [67]. This intu-
itive picture is corroborated by the fact that the effective
mass of the attractive polaron crosses over from ↵m

�

,
the mass of a single impurity, to (↵+ 1)m

�

which is the
mass of a molecule made up of the impurity and one bo-
son [cf. Fig. 5 (b)].

The behavior of the quasiparticles as a function of mo-
mentum, shown in Fig. 3, is qualitatively different on
the two sides of the Feshbach resonance. For a

� 

> 0,
the attractive polaron’s momentum dependent effective
mass increases with increasing momentum and its dis-
persion eventually follows the dispersion of the molecu-
lar state which reflects the polaron-to-molecule crossover
also in the momentum domain. The onset of the scatter-
ing continuum happens at p

2
/2↵m

�

for p < ↵

p
m

�

g

��

n

(within the considered approximation, this statement
is exact and reflects Landau’s critical velocity, cf. Ap-
pendix C) and crosses over to a molecule-like dispersion
⇠ p

2
/2(↵ + 1)m

�

for larger momenta. The “dispersion
law” of the continuum onset is determined by the on-

n�1/3p

⌦
/⌦

0

(a)

n�1/3p

⌦
/⌦

0

(b)

FIG. 3: Impurity spectral function A

pol

(⌦,p) as a function
of frequency and momentum for (a) n

1/3
a

�1
� = 1 and (b)

n

1/3
a

�1
� = �5. In both graphs, n

1/3
a�� = 0.1. Solid line:

free impurity dispersion. Dashed line: free molecule like dis-
persion. Dash-dotted line: dispersion according to the effec-
tive mass of the attractive polaron at p = 0. For positive
a� , the attractive polaron peak gradually bends away from
its dispersion at vanishing momentum, reflecting an increase
in the momentum-dependent effective mass. At negative a� ,
the effective mass stays approximately constant as a function
of momentum.
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n�1/3p

⌦
/⌦

0

(a)

n�1/3p

⌦
/⌦

0

(b)

FIG. 8: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV as a function of
momentum and frequency. The black lines have the same
meaning as in Fig. 3. (a) a

�1
� = 1. Note how the attractive

polaron peak is “annihilated” when it touches the continuum.
(b) a

�1
� = �5. The continuum practically merges with the

peak for higher momenta.

periments permit to measure not only the excitation en-
ergies [37], but also the quasiparticle weight and width.
The latter two can be inferred from a shift in the Rabi
frequency and the damping of Rabi oscillations, respec-
tively [9]. The effective mass may in turn be determined
using momentum-resolved photoemission or Raman spec-
troscopy [7, 36, 38, 76].

It is an interesting question what happens on time
scales longer than those relevant for inverse rf experi-
ments. For instance, the repulsive polaron exhibits a
positive energy which decreases when na

3
� 

is lowered.
Thus, in an experimental situation with a trapped BEC,
the repulsive polaron can minimize its energy by mov-
ing to a region of lower density [15]. The fact that this
tendency towards phase separation happens for any pos-
itive a

� 

is in stark contrast to the case of the repulsive
Fermi polaron. In the latter, phase separation—which
here may also be seen as a transition towards a ferro-
magnetic phase—only happens for interaction strengths
above a critical value due to the competition between ki-
netic and interaction energy [8, 64]. For the Bose polaron,
the process of phase separation is itself in competition
with the tendency towards self-localization accompanied
by a local deformation of the BEC. Concerning the study
of such dynamical phenomena, our calculation can be
seen as the derivation of an effective field theory for the
repulsive Bose polaron which includes quasiparticle prop-
erties such as a finite lifetime and an effective momentum-
dependent interaction. Starting from the corresponding
equations of motion, the time evolution from the initial
out-of-equilibrium state towards self-localization or phase
separation may now be studied. Note that our discus-
sion so far ignores the effects of three-body recombina-
tion due to Efimov physics [77]. Even in our inverse rf
spectroscopy scenario, the latter is not completely sup-
pressed. In the case of the repulsive polaron, one may
however even utilize the Efimov effect to suppress losses
by exploiting the minima in the three-body recombina-
tion which are due to the destructive interference of decay
channels [78]. In fact, it poses an interesting question on
its own how Efimov physics is affected by medium ef-
fects such as the hybridization of the impurity with the
molecular state.

Finally, it would be interesting to investigate the pos-
sibility of an alternative representation of the Bose po-
laron. In the Fermi polaron problem the NSCT approach
leads to equations which are formally equivalent to the
equations obtained from a simple variational wave func-
tion ansatz [53]. This ansatz describes the Fermi polaron
as a bare impurity dressed by a single particle–hole fluc-
tuation. We expect that such a mapping from diagrams
to a variational wave function exists as well in the present
case of the Bose polaron.

Momentum 
resolved
Spectral 
function

annihilation of fast 
attractive polaron
at scattering 
threshold

Non-selfconsistent Selfconsistent

momentum 
dependent
Z-factor vanishes!

SIMILAR TO FROEHLICH POLARON 
Z-FACTOR FROM DIAGMC,
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Proposal for experimental observation

Challenge
‣ Efimov effect + statistics: Bose-Fermi mixtures unstable due to enhanced three-body 

recombination

‣ possible BEC deformation due to large interactions

Resolution: Inverse RF spectroscopy

- similar procedure proposed and used for fermions

‣ maps out impurity spectral function

‣ Efimov states off-resonant

‣ BEC deformation irrelevant as

‣ Quasiparticle weight measured via Rabi frequency shift

E.G. 40K/41K MIXTURE AT B=543 G
SEE MIT GROUP: WU ET AL. PRA 84 (2012)

SEE E.G. RS, RATH, ZWERGER, EJB 85 (2012)

strongly interacting
w/ BEC

impurity

weakly interacting
w/ BEC

interaction shift

RF drive BEC
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with the bare Fermi propagator replaced by

G

(1)
 

(⌦,p) =

1

⌦� p

2

2m 
� ⇢0�

NSC

� 

(⌦,p) + i0

+
(24)

where �

NSC

� 

is the non-selfconsistent T-matrix we ob-
tained in the previous Section, cf. Eqs. (8) and (9). Since
the integrand is known analytically, the frequency inte-
gration and subsequent continuation to real frequencies
may be carried out analytically so that only the momen-
tum integral has to be done numerically.

�

n

1/3
a

� 

��1

⌦
/
⌦

0

FIG. 7: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV. The black lines are
identical to the ones in Fig. 2. Note how the continuum of
excitations now follows the attractive polaron peak.

The qualitative changes following from this scheme
with respect to the non-selfconsistent one can be seen in
Fig. 7. The continuum onset is pulled to negative energies
and now follows the curve which in the non-selfconsistent
approximation is described by the polaron peak. A sim-
ilar behavior has been found for the molecule spectral
function in a renormalization group study of the Fermi
polaron [8]. This may be seen as a further indication
of the Bose polaron being hybridized with the molecule,
cf. Appendix A. Moreover, we observe a strong suppres-
sion of both the attractive and the repulsive polaron’s
spectral weight. This large suppression, however, does
not come as a surprise. Indeed, by solving Eq. (22) self-
consistently we incorporate more fluctuations which en-
tangle the impurity with the bosons’ degrees of freedom.
This loss of spectral weight in the attractive polaron is
compensated by a transfer of weight to excited contin-
uum states which is facilitated by the reduced excitation
gap as compared to the NSCT approach. The substan-
tial reduction of the quasiparticle weight is accompanied

by changes to the effective mass of a similar magnitude.
In the selfconsistent calculation the effective mass is no
longer related to the quasiparticle weight by the simple
relation (21) and takes values larger than (↵ + 1)m

�

.
However, apart from a small upward shift, it still essen-
tially follows its behavior from the NSCT approximation
[cf. Fig. 5 (b)]. The repulsive polaron is shifted to slightly
higher energies [cf. Fig. 4] while its quasiparticle width
is substantially reduced with respect to the NSCT result
for all but the strongest interspecies interactions.

Further changes can be seen when one considers the
momentum dependence of the impurity spectral function
which is shown in Fig. 8 for two different values of the
interspecies coupling. The most prominent differences
appears for positive values of a�1

� 

[Fig. 8 (a)] where the
attractive polaron peak touches the continuum and dies
out rapidly instead of running parallel to it as it does
in the NSCT approximation. The qualitative behavior
of the repulsive polaron, however, remains unchanged,
showing a smooth interpolation from a very broad peak
at low momenta to a sharp peak with an effective mass of
↵m

�

towards higher momenta. The changes with respect
to the NSCT approach are less pronounced for negative
values of a

�1
� 

[Fig. 8 (b)]. Here one only notices that
when the attractive polaron pole enters the continuum,
the latter is gradually absorbed by the former. Hence,
within the SCT approach, the attractive polaron becomes
subject to damping above a critical momentum for any

interspecies interaction strength.

V. CONCLUSION AND OUTLOOK

We have determined the excitation spectrum of an im-
purity immersed in a homogeneous BEC. We find that
this spectrum is dominated by two branches, the attrac-
tive and repulsive Bose polaron. The attractive polaron
is a stable quasiparticle at negative energies which exists
for all interspecies couplings. It exhibits a crossover from
a weakly dressed polaron to a molecule as one crosses the
Feshbach resonance. This can be understood in terms of
its hybridization with a molecular state due to the BEC.
The repulsive polaron emerges as a metastable quasipar-
ticle on the a

�1
� 

> 0 side of the Feshbach resonance.
While it is long-lived for small scattering lengths a

� 

,
its lifetime becomes exceedingly small as the Feshbach
resonance is approached. We have shown that because
of the weak dependence of spectral properties on the
boson–boson interaction, the essence of the problem can
already be captured by a simple non-selfconsistent calcu-
lation using a vanishing boson–boson coupling constant.
The most important correction to this simple picture is
given by the multiple excitation of bosons from the con-
densate, which we account for by the selfconsistent in-
corporation of the selfenergy feedback into the T-matrix
equation. We predict various quasiparticle properties of
the attractive and repulsive polaron which can be tested
in future experiments. For instance, radiofrequency ex-
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Outlook

Thank you!

dynamical competition between molecule formation & Froehlich self-localization 
& bubble formation

‣ Fate of Efimov physics in the realm of the polaron problem? 

‣Detailed study of impurity-molecule crossover

interplay few & many-body physics2

‣What happens on time scales longer than those of RF experiments?
non-equilibrium physics1

‣Our theory describes the polaron right after the drive to the final state
Here the repulsive polaron is in a highly excited, non-equilibrium state

Repulsive Bose polaron as probe of nonequilibrium physics

C.F.: ZINNER, EPL 101, 60009 (2013)

Monday, June 30, 14


