
EFIMOV TRIMERS  
UNDER STRONG CONFINEMENT

in collaboration with	

Jesper Levinsen (Aarhus Institute of Advanced Studies)	

Meera Parish (University College London)

Pietro Massignan 
(Institute of Photonic Sciences, Barcelona)

1



STRONG CONFINEMENT EFFECTS

The dimensionality of the embedding space  
profoundly affects the system properties.	


Examples:	


Anderson localization	


condensation & superfluidity
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OUTLINE	


Three identical bosons: 3D vs. 2D	


What happens in between? (quasi-2D)	


trimer spectra and aspect-ratios	


hyper-spherical potentials and wave functions	


Experimental consequences
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2&3 IDENTICAL BOSONS IN 3D
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Fig. 23. The a−1–K plane for the 3-body problem. The allowed regions for 3-atom scattering states and atom–dimer scattering states are labelled
AAA and AD, respectively. The heavy lines labeled T are three of the infinitely many branches of Efimov states. The cross-hatching indicates the
threshold for scattering states. The axes labelled 1/a and K are actually H 1/4 cos ! and H 1/4 sin !.

where f (x) is a periodic function with period 2". As another example, the binding energies of the Efimov trimers
scale as E

(n)
T → #−2m

0 E
(n)
T . The constraints of the discrete scaling symmetry are more intricate in this case, because it

maps each branch of the Efimov spectrum onto another branch. The dependence of the binding energies on a and $∗
must satisfy

E
(n)
T (#m

0 a, $∗) = #−2m
0 E

(n−m)
T (a, $∗). (176)

This implies that the binding energies for a > 0 have the form

E
(n)
T (a, $∗) = Fn(2s0 ln(a$∗))

22$2
∗

m
, (177)

where the functions Fn(x) satisfy

Fn(x + 2m") = (e−2"/s0)mFn−m(x). (178)

The functions Fn(x) must also have smooth limits as x → ∞:

Fn(x) → (e−2"/s0)n−n∗ as x → ∞. (179)

In the 3-body problem, it is again convenient to introduce the energy variable K defined by Eq. (69). For a given value
of $∗, the possible low-energy 3-body states in the scaling limit can be identified with points in the (a−1, K) plane. It
is also convenient to introduce the polar coordinates H and ! defined by Eqs. (70). The discrete scaling transformation
in Eqs. (173) is simply a rescaling of the radial variable with $∗ and ! fixed: H → #−m

0 H .
The a−1–K plane for three identical bosons in the scaling limit is shown in Fig. 23. The possible states are 3-atom

scattering states, atom–dimer scattering states, and Efimov trimers. The regions in which there are 3-atom scattering
states and atom–dimer scattering states are labelled AAA and AD, respectively. The threshold for scattering states is
indicated by the hatched area. The Efimov trimers are represented by the heavy lines below the threshold, some of
which are labelled T. There are infinitely many branches of Efimov trimers, but only a few are shown. They intercept the
vertical axis at the points K =−(e−"/s0)n−n∗$∗. Although we have labelled the axes a−1 =H cos ! and K =H sin !, the
curves for the binding energies in Fig. 23 actually correspond to plotting H 1/4 sin ! versus H 1/4 cos !. This effectively

Braaten & Hammer, Phys. Rep. 2006

Largest set by the temperature,  
 or the dimension of the container

Scaling symmetry: continuous (two-body) vs. discrete (three-body)

One universal dimer:	


 
For resonant interactions (1/a=0), in principle 
∃ an infinite tower of Efimov trimers.  
 
Trimers map onto each other via the scale  
transformations             and  

Eb = � ~2
ma2

(a > 0)

a ! �n
0a E ! ��2n

0 E

Smallest set by short-distance physics

~RvdW
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2&3 IDENTICAL BOSONS IN 2D

Two universal trimers:

�16.5 ~2

ma2
2D

�1.27 ~2

ma2
2D

Both two- and three-body problems display a continuous scaling symmetry

Bruch & Tjon, PRA 1979

Petrov & Shlyapnikov PRA 2001  
Bloch, Dalibard, Zwerger RMP 2008
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Fig. 23. The a−1–K plane for the 3-body problem. The allowed regions for 3-atom scattering states and atom–dimer scattering states are labelled
AAA and AD, respectively. The heavy lines labeled T are three of the infinitely many branches of Efimov states. The cross-hatching indicates the
threshold for scattering states. The axes labelled 1/a and K are actually H 1/4 cos ! and H 1/4 sin !.

where f (x) is a periodic function with period 2". As another example, the binding energies of the Efimov trimers
scale as E

(n)
T → #−2m

0 E
(n)
T . The constraints of the discrete scaling symmetry are more intricate in this case, because it

maps each branch of the Efimov spectrum onto another branch. The dependence of the binding energies on a and $∗
must satisfy

E
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T (#m
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This implies that the binding energies for a > 0 have the form
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where the functions Fn(x) satisfy

Fn(x + 2m") = (e−2"/s0)mFn−m(x). (178)

The functions Fn(x) must also have smooth limits as x → ∞:

Fn(x) → (e−2"/s0)n−n∗ as x → ∞. (179)

In the 3-body problem, it is again convenient to introduce the energy variable K defined by Eq. (69). For a given value
of $∗, the possible low-energy 3-body states in the scaling limit can be identified with points in the (a−1, K) plane. It
is also convenient to introduce the polar coordinates H and ! defined by Eqs. (70). The discrete scaling transformation
in Eqs. (173) is simply a rescaling of the radial variable with $∗ and ! fixed: H → #−m

0 H .
The a−1–K plane for three identical bosons in the scaling limit is shown in Fig. 23. The possible states are 3-atom

scattering states, atom–dimer scattering states, and Efimov trimers. The regions in which there are 3-atom scattering
states and atom–dimer scattering states are labelled AAA and AD, respectively. The threshold for scattering states is
indicated by the hatched area. The Efimov trimers are represented by the heavy lines below the threshold, some of
which are labelled T. There are infinitely many branches of Efimov trimers, but only a few are shown. They intercept the
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THREE BOSONS IN QUASI-2D

the UV cut-off Λ controls the three-body physics at short-distances,	

and fixes the crossing of the deepest Efimov trimer with the 3-atom continuum (a-)

Trimer wave function:

J. Levinsen, P. Massignan, and M. Parish, arXiv:1402.1859

see also the recent work on trimers in a box by M. Yamashita et al., arXiv:1404.7002
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SKORNIAKOV—TER-MARTIROSIAN EQ.

(the CoM q.number N does not appear in the final formula!)
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FIG. 2: Spectrum of trimers calculated for two di↵erent confinement strengths, and the comparison with 2D
trimer energies. a, Trimer energies for lz/a� = �1 and b, for lz/a� = �2.5 (solid lines). We also show the trimer energies
in the 2D limit (dashed lines), and we see how the quasi-2D trimers approach these in the limit |as| . |a�|. For lz/a� = �2.5
we see a behavior reminiscent of a spectrum with an avoided crossing, as all trimer energies change abrubtly when as ⇡ a�
(marked by a vertical dotted line), while the middle trimer approaches the 2D energy of the deepest bound trimer for larger
values of the scattering length.

in unit volume)

T �1 (k1, E3 � ✏k1 �N1!z)�
N1
k1

= 2
X

k2,N2n23n31

fn23fn31hN1n23|N2n31ie�(k2
1+k2

2)/⇤
2

�

N2
k2

E3 � ✏k1 � ✏k2 � ✏k1+k2 � (N1 + n23)!z
.

(2)

Here, the factor 2 is a symmetry factor arising from the
indistinguishability of the bosons, the T -matrix T de-
scribes the repeated interaction of two atoms, fn

ij

is the
wavefunction of the relative motion evaluated at zij = 0,
and hN1n23|N2n31i is a Clebsch-Gordan coe�cient dis-
cussed below. The trimer energy E3 is measured with
respect to the three-atom continuum and is found as a
non-trivial solution of the above equation for �. Further
details may be found in the Methods.

The evaluation of the spectra from Eq. 2 presents a
considerable challenge: the energy levels of the harmonic
oscillator are evenly spaced while the physics we are de-
scribing is characterized by a discrete energy scaling of
e

2⇡/s0 ⇡ 515 in the limit of weak confinement. With the
aid of the selection rule N1 + n23 = N2 + n31, we thus
need to determine of the order of 5153 Clebsch-Gordan
coe�cients in order to properly characterize the initial
departure from the 2D limit. While Ref. [12] evaluated
the coe�cients through four successive two-body trans-
formations, the coe�cients may in fact be determined
directly by noting that hN1n23|N2n31i is the matrix ele-
ment of the eigenstates of two isotropic two-dimensional
harmonic oscillators, related by a rotation in the plane by
4⇡/3 as easily verified from the definition of the coordi-
nates. We then use Schwinger’s mapping [13] of the two-
dimensional isotropic harmonic oscillator to the SU(2)

representation of the angular momentum algebra. In this
representation one identifies the angular momentum op-

erators by J = 1
2

�
b

†
1 b

†
2

�
�

✓
b1

b2

◆
, with � the usual

Pauli spin matrices and b1 and b2 harmonic oscillator
operators. The eigenstates  of angular momentum are
then | (j,m)i = |j + m, j � mi, with j, m the usual
quantum numbers related to J

2 and Jz. In this basis,
the rotation corresponds exactly to the application of the
operator e�i(2⇡/3)J

y , and from the definition of Wigner’s

small d-matrix, d(j)m0m(�) ⌘ h (jm0)|e�i�J
y | (jm)i, we

conclude that the Clebsch-Gordan coe�cients are related
to the Wigner d-matrix by

hN1n23|N2n31i = d

(N1+n23
2 )

N2�n31
2 ,

N1�n23
2

(2⇡/3). (3)

This represents a major simplification of the three-body
problem, and allows the evaluation of a large number of
matrix elements.
Results It should come as no great surprise that the

energy of the deepest trimer shown in Fig. 1 is only
weakly modified by the confinement in its regime of exis-
tence in 3D. Indeed, universal theory predicts that on
resonance in 3D the size of the deepest trimer state
is

⌦
R

2
↵ ⇡ 1.1a2� [7], and thus when lz & |a�|, this

trimer may be expected to be only weakly perturbed
by the confinement. As a measure of the confinement
needed to remove any resemblance to the 3D spectrum,
we mention that our theory predicts that for 1/as = 0,
a trimer exists below the 3D continuum for confine-
ment lengths down to lz/as ⇡ �0.3; for 133Cs with
a� = �957a0 [8], this corresponds to a confinement fre-
quency !z ' 2⇡ ⇥ 330kHz. Here a0 is the Bohr radius.
While frequencies close to 100kHz have been used for
sideband cooling of 133Cs [14, 15], such strong confine-
ment clearly represents a considerable challenge. Thus
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FIG. 2: Spectrum of trimers calculated for two di↵erent confinement strengths, and the comparison with 2D
trimer energies. a, Trimer energies for lz/a� = �1 and b, for lz/a� = �2.5 (solid lines). We also show the trimer energies
in the 2D limit (dashed lines), and we see how the quasi-2D trimers approach these in the limit |as| . |a�|. For lz/a� = �2.5
we see a behavior reminiscent of a spectrum with an avoided crossing, as all trimer energies change abrubtly when as ⇡ a�
(marked by a vertical dotted line), while the middle trimer approaches the 2D energy of the deepest bound trimer for larger
values of the scattering length.
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energy of the deepest trimer shown in Fig. 1 is only
weakly modified by the confinement in its regime of exis-
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resonance in 3D the size of the deepest trimer state
is
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↵ ⇡ 1.1a2� [7], and thus when lz & |a�|, this

trimer may be expected to be only weakly perturbed
by the confinement. As a measure of the confinement
needed to remove any resemblance to the 3D spectrum,
we mention that our theory predicts that for 1/as = 0,
a trimer exists below the 3D continuum for confine-
ment lengths down to lz/as ⇡ �0.3; for 133Cs with
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Wave function for the  
 atom-pair relative motion:

atom-dimer vertex:

relative z-motion	

wave function at zr=0

Clebsch-Gordan coefficient

7J. Levinsen, P. Massignan, and M. Parish, arXiv:1402.1859



SPECTRUM

deepest trimer closely resembles the 3D-one, even for strong confinement	


spectrum of trimers is strongly modified above the 3D continuum	


energy of trimer (measured from the q2D dimer) can be a significant fraction of ωz even 
when |a-|/a<-1, so trimers can be quite resistant to thermal dissociation when T<<ωz

Cz ⌘ |a�|/lz

!z ⇡ 2⇡ ⇥ 30kHz!z ⇡ 2⇡ ⇥ 5kHz133Cs:
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SPECTRUM (2D STYLE)

the 2D limit is recovered for small and negative scattering lengths (“BCS side” of the resonance)	


the two deepest trimers are stabilized for every negative scattering length	


avoided crossings: superposition of trimers with Efimovian + 2D-like character

!z ⇡ 2⇡ ⇥ 30kHz!z ⇡ 2⇡ ⇥ 5kHz
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SHAPE OF THE TRIMERS
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HYPERSPHERICAL POTENTIALS

 (R,⌦) =
1

R5/2 sin(2↵k)

1X

n=0

fn(R)�n(R,⌦)Hyper-spherical expansion:

Hyper-radial Schrödinger equation:

� 1

2m

@2

@R2
+ V (R)

�
f0(R) = (E3 + !z) f0(R)

V(R) depends on lz/a, but not on the 3-body parameter.

R2 = r21 + r22 + r23
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HYPERSPHERICAL POTENTIALS
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• V(R) approaches the 3D potential for  
                    and the 2D potential for                          	


• When              the potential displays a repulsive barrier with height	


• Small weight of trimers in the short distance region enhances lifetime
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EXPERIMENTAL CONSEQUENCES
As “2D” experiments are performed at confinements often weaker than 5kHz,  
we expect this crossover physics to impact three-body correlations in realistic 2D  
studies on the attractive side of the Feshbach resonance	


Confinement raises continuum by       , so trimer resonance and loss peak disappear  
for                      , i.e.,     	


When aiming at observing the discrete scaling symmetry:  
the 2nd trimer signature disappears once 
which for 133Cs corresponds to	


Similar effects expected for 4-body states (as two tetramers exist in 2D),  
or in quasi-1D

!z ⇡ 2⇡ ⇥ 10Hz

5

using radio-frequency spectroscopy, which has success-
fully been applied in 3D [21, 22] close to the atom-dimer
continuum. Interestingly, in the present case the trimer is
close to the atom-dimer continuum also at negative scat-
tering lengths, and we propose to investigate the avoided
crossing occuring close to a� in the limit of a strong con-
finement, where the dimer energy is well separated from
the three-atom continuum.

Finally, we discuss the implications of our findings for
the experimental quest to observe true Efimov scaling
in an ultracold atomic gas. As we just argued, the ex-
perimental signature of the deepest Efimov trimer disap-
pears when lz/|a�| . 2.5. Due to the universality of
the 3D spectrum, we thus predict that the peak cor-
responding to the next Efimov state disappears when
lz/|a�| . 22.7 ⇤ 2.5. For the case of 133Cs this corre-
sponds to a confinement of !z ' 10Hz. Thus a very
weak trapping potential is needed in order to observe the
second Efimov three-body recombination peak. These ar-
guments translate in a generic manner to all geometries;
one simply needs to compare the height of the peak at
the 3D Efimov resonance to the increase in the three-
atom continuum. Thus our results are relevant to any
experiment seeking to detect shallow trimers in a trap.

Methods

1. Hamiltonian

We consider the Hamiltonian I can’t figure out how to
get the two lines of indices on top of each other in the
sum...

H =
X

k

✏kâ
†
kâk +

g

2

X

k1,k2,k3,k4
k1+k2=k3+k4

⇠(k12)⇠(k34)a
†
k1
a

†
k2
ak3ak4

with ak (a†k) the annihilation (creation) operator of

atoms with momentum k, kij ⌘ k
i

�k
j

2 the relative mo-
mentum, and ✏k = k

2
/2m the free dispersion. ⇠(k) is a

function describing the cuto↵ of the interaction at large
momenta, and we take this to be ⇠(k) = e

�k2/⇤2

.

2. Two-body problem

The two-body T-matrix appearing in the STM equa-
tion describes scattering of two atoms at a total planar
momentum k and energy E. It takes the form

T (k, E) =
2
p
2⇡

m

⇢
lz

as
� F

✓�E + k

2
/4m

!z

◆��1

,

where the energy E is measured with respect the 2-atom
continuum. The interaction is renormalized by the use of
the 3D scattering length, as. This calculation was done

in Refs. [23, 24] for the case of a short ranged potential
characterized only by the scattering length. In our case
with a Gaussian cuto↵, the function F takes the form

F(x) =

Z 1

0
du

1� e�xup
[(1+�)2�(1��)2e�2u]/(2u+4�)p

4⇡(u+ 2�)3
,

with � ⌘ (lz⇤)�2. Our expression for F reduces to the
expression of Ref. [24] in the limit � ! 0. In our model
we have for the wavefunctions of the relative motion eval-
uated at the origin

fn
r

= (�1)nr

/2

s
(nr � 1)!!

nr!!

r
1

1 + �

2

✓
1� �

2

1 + �

2

◆n
r

,

if nr is even and 0 otherwise (we have absorbed the pref-
actor (m!z/2⇡)1/4 into the definition of T ).

3. Three-body problem

In the STM equation we employ the simplification
⇠(k1 + k2/2)⇠(k2 + k1/2) ! ⇠(k1)⇠(k2) in the 2D plane.
This presents a major technical simplification, as it al-
lows us to project the equation analytically onto the s-

wave, �N1
k1

⌘ R d\k1
2⇡ �

N1
k1

. Once ⇤ has been used to fix the
three-body parameter, the physics at energy scales much
smaller than ⇤2

/m becomes insensitive to this change.
Using the 3D STM equation with our two-body interac-
tion yields the crossing of the deepest Efimov trimer with
the three-atom continuum at a� = �9.39/⇤ and the en-
ergy of the deepest trimer at the 3D Feshbach resonance
of �0.05⇤2

/m. As the trimer energies considered in the
quasi-two-dimensional geometry are always smaller than
those in the 3D geometry, see Fig. 1, the assumption that
we consider energies much smaller than the energy scale
associated with the cuto↵ is well justified.
The spectra in Figs. 1 and 2 are then calculated from

the STM equation (2) using the maximum harmonic os-
cillator quantum numbers N1 = 500 and n23 = 1500.

4. Adiabatic hyperspherical potential
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CONCLUSIONS

Efimov trimers under strong confinement	


Discrete scaling survives only for 	


Deepest trimer remains 3D-like even under strong confinement	


Mixing with 2D trimers stabilizes the two deepest trimers for all a<0	


Small weight at short distance will enhance lifetime (long-lived Efimov trimers?)	


Consequences for correlations, quest to observe discrete scaling symmetry
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