CARL\$BERGFONDET

Center for

Quantum

Devices

Current-induced magnetization in a two-dimensional topological insulator coupled to an environment of localized spins

A. Mathias Lunde

Center for Quantum Devices, Niels Bohr Institute, Copenhagen, Denmark

Cold atoms and beyond, AIAS conference Friday the 27th of June 2014

Collaborator: Gloria Platero (Madrid, Spain)

<u>Ref.</u>: - Phys. Rev. B **86**, 035112 (2012)

- Phys. Rev. B 88, 115411 (2013) 506

<u>Outline</u>

Introduction: What is a 2D topological insulator? Solid state experiments

• A 2D Topological insulator coupled to a spin bath

• Summary

What is a Topological insulator?

Minimal answer:

A material with an *insulating bulk* and *metallic states at the boundary*

2D Topological Insulator:

Proposed in Graphene!

Problem: The spin-orbit coupling seems two small experimentally!

Kane and Mele, 95 Phys. Rev. Lett 2005

Only a few Solid state materials: HgTe and InAs/GaSb quantum wells.

Review: Qi and Zhang, Rev. Mod. Phys. 83, 1057 (2011)

Spin-momentum locking in topological insulators

Helical edge states: -Spin up and down are counterpropagating

<u>Time-reversal invariance in topological insulators</u> <u>Generally:</u>

In 2D topological insulators:

The importance of Time-reversal invariance

wave vector

Intuitive explanation for appearance of edge states

Bernevig, Hughes and Zhang, Science 314, 1757 (2006)

<u>Outline</u>

Introduction: -What is a 2D topological insulator? -Solid state experiments

• A 2D Topological insulator coupled to a spin bath

• Summary

- Further evidence for edge state transport from Hall bar geometry Molenkamp's group, Science (2009)
- Better conductance quantization in InAs/GaSb quantum wells Du's group, PRL (2011) + (2014)

<u>Outline</u>

Introduction: -What is a 2D topological insulator? -Solid state experiments

• A 2D Topological insulator coupled to a spin bath

• Summary

<u>Setup</u>

Realizations:

- -Magnetic impurities
- -Nuclear spins A.M. Lunde and Platero PRB (2013)

Idea

Fixed spins \Rightarrow spin-flip + momentum-reversal \Rightarrow Backscattering!

Voltage induce magnetization at edges

High bias limit: $\mu_{ m L} - \mu_{ m R} \gg k_{ m B} T$ (or low temperature)

Voltage induce magnetization at edges

High bias limit: $\mu_{
m L} - \mu_{
m R} \gg k_{
m B} T$ (or low temperature)

No steady state conductance change!! $G = \frac{2e^2}{h}$

Voltage induced magnetization: Temperature effects

 $\underbrace{\text{Stationary Magnetization:}}_{\Gamma_{\uparrow\leftarrow\downarrow}} \frac{dM}{dt} = \frac{2}{N_s} (\Gamma_{\downarrow\leftarrow\uparrow} - \Gamma_{\uparrow\leftarrow\downarrow}) \implies \Gamma_{\downarrow\leftarrow\uparrow} = \Gamma_{\uparrow\leftarrow\downarrow} \Longrightarrow \delta I = 0$ $\Gamma_{\uparrow\leftarrow\downarrow} \propto \frac{N_{\uparrow}}{N_s} \int dk f_R^0(\varepsilon_{k\uparrow}) [1 - f_L^0(\varepsilon_{k\uparrow})] \\ \Gamma_{\downarrow\leftarrow\uparrow} \propto \frac{N_{\downarrow}}{N_s} \int dk f_L^0(\varepsilon_{k\uparrow}) [1 - f_R^0(\varepsilon_{k\uparrow})] \end{aligned}$

• 2D topological insulators exist in the solid state

 2D topological insulator + spin-bath = Magnetization at the edge, but no current change!!

Spin-relaxation in spin-bath gives a small current change.

Thank you for your attention!