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Idea

”Is the study of few-body physics limited to the measurement of
loss rates?” (R. Grimm)

Is the use of optical lattices limited to the emulation of the
Hubbard model?

Use optical lattice to provide stability against losses and few-body
physics to introduce new ideas to atoms in optical lattices ⇒ new
tool for many-body physics.



Idea

Hubbard model in an optical lattice (OL) needs weak interactions
a�d

• not to occupy higher bands

• so that U, J are calculated perturbatively
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Idea
Here: OLs with a&d keeping the single band approach.

• One atomic species confined to the OL

• second species interacts with the first one but is untrapped

• second species forms bound states with the first and is trapped only
by interactions

• requires achieving a ∼ d : Feshbach resonance with good magnetic
field control !"#$%&'%'(")$("*+%$

• work with L-H bound states: 
no trapping potential for the light atoms!

• experimentally requires as ~ 500nm, as = 600nm
already acheived experimentally in a narrow resonance. 
[C. Kohstall et al, Nature, 485, 615(2012)]
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H! trapped in the lattice
L ! spin polarized fermions, untrapped, 

but interacting with H with scattering 
       length as
as  can now be large, as " d.

Similar ideas in few-body systems: Y. Nishida and S. Tan (2011); Y.
Nishida (2010); T. Yin et al (2011)

See also: M. Antezza and Y. Castin (2006); D. Petrov et al (2008).



Idea

Why? Brings new non-lattice degrees of freedom going beyond the
conventional Hubbard model.

Also few-body physics in a new setting: “molecules” with enhanced
stability due to the lattice (strongly suppresses three-body losses)

a ∼ 600nm already achieved in a narrow resonance (∼ 1G) in a
6Li-40K mixture (C. Kohstall et al 2012)



Example of application

Implement an electron-phonon quantum simulator:

Trapped atoms (Heavy - mass M)

• “ions”

• in a deep OL such that their wave functions do not overlap
and their statistics are unimportant

• without the “electrons” they would oscillate at the lattice
onsite frequency (flat phonon dispersion)

Untrapped atoms (Light - mass m)

• “electrons”

• spin polarized fermions

• interact with heavy atoms creating phonon dispersion, Peierls
instability, polaron physics, etc.



Calculations I
M � m: Born-Oppenheimer Approximation - but not necessary...

Wave function of Nl light and Nh heavy atoms:

Ψ = ψ ({R})χ ({R}, {r})

R, r heavy and light coordinates, χ Slater determinant of Nl light
atom states φ:

φ(r) ∝
Nh∑
j=1

cje
−κ‖Rj−r‖/‖Rj − r‖

κ, cj determined by the Bethe-Peierls boundary conditions.

The energy of each orbital is

E (κ) = −~2κ2/2m < 0 so that total interaction energy is

Nl∑
i=1

E (κi )



Calculations II

The BP conditions lead to(
κ− 1

a

)
ci =

Nh∑
j=1

e−κ‖Rj−Ri‖

‖Rj − Ri‖
cj

The trapping potential of the heavy atoms is a 1D lattice tightly
confined radially:

V =
1

2
Mω2

⊥(x2 + y2) + V0 cos2(πz/d)

Note that ω⊥ � ωz where ωz is the onsite lattice oscillation
frequency so wave function tightly confined in two directions on
each site - motion essentially 1D.

Recoil energy ER ≡ π2Edm/M
KE of light atoms ∼ Ed ≡ ~2/2md2



Calculations III

Need to reduce losses so minimise overlap of heavy atom wave
functions by keeping V0 large - heavy atoms are localised at the
lattice site minima: implements Kronig-Penney model with
δ-function potentials (A. Berezin, PRB 33 2122 (1986)).

Periodic boundary conditions + Bloch’s theorem

cj = exp(ik‖Rj‖) with exp(ikdNh) = 1

where k is the light atom lattice wave vector.

The resulting “electron” band is quite different from that of a
standard Hubbard model

E (k) = −Edarccosh
2

(
ed/a

2
+ cos(kd)
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Band structure

a << d

E(k) = !Ed arccosh
2 ed /a
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In the full-filled deep "BEC limit" (a! 0+ ),
the atoms form Nl = Nh  tightly bound dimers
of energy " !2 / 2ma2,  the dispersion is flat since
the dimers hardly overlap with each other. 
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As a increases from zero, the bandwidth becomes nonzero
and the band gap gradually decreases until it disappears at 
d / a = ln 4 !1.39. At unitarity the BOA tells us that the gap
has closed since the band has now a Fermi surface at k = ±! / 3d
and the bandwidth is 0.93Ed, where about one third of the light 
atoms remain bound while the other two thirds have been lost to the 
continuum. For any value of d / a there is still a fraction of bound 
atoms although it becomes very small on the "BCS" side since 
the bottom of the band gradually approaches zero as d / a"#$.
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• Full-filled deep“BEC limit” (a→ 0+): tightly bound dimers of energy
−~2/2ma2, flat dispersion, no dimer overlap.

• a increases from 0+: bandwidth increases, Egap decreases until disappearing at
d/a = ln 4 ' 1.39.

• Unitarity: bandwidth= 0.93Ed with Fermi surface at k = ±π/3d (1/3 light
atoms remain bound).

• For any value of d/a there is still a fraction of bound atoms although it
becomes very small on the “BCS” side.



Validity of BOA and losses
Importance of the nonadiabatic terms

(full band) transfer of light atoms into the continuum due to phonons.
But, if Egap & 0 forbidden by energy conservation: localized hole leads to
an attraction between heavy atoms ∼ Ede

−d/a. But, for V0 = 25ER and
M/m ' 10, lattice potential is stronger (∼ 10ER ∼ 10Ed) so lattice
deformation is very small: true gap ∼ band gap.

Losses

1. Formation of few-body states of size a: Already in Feshbach bound
states so losses are only excitation of light atoms into the continuum due
to collisions with phonons - evaporative cooling - tunable since it depends
strongly Egap/(electron-phonon coupling strength).

2. Relaxation to deep bound states: light-light-heavy losses (h-h-l
forbidden due to lattice). Rate of formation ∼ Ed(Re/a)4 exp(−2d/a)/~
where Re is the range of the interatomic potential (Petrov et al). For the
gapped case d/a=2, relaxation time &10s for a 6Li-40K mixture.



Novelties in this setup

New type of lattice It allows us to create a lattice for the light
species using lasers which only trap the heavy atoms

Evaporative cooling At finite temperatures, atoms with large
kinetic energy can escape to continuum: natural evaporative
cooling process (assuming thermalization mechanism e.g. via
collisions with heavy atoms)

Tunneling physics At very low temperatures and for small enough
gaps, light atoms can in principle tunnel out of the band which
might lead to interesting analogies with tunnelling problems in
solid state physics



Phonons

We can simulate both transverse and longitudinal phonons



Longitudinal Phonons

Heavy atom lattice frequency shifted from ωz =
√

4V0ER due to light
atoms. At d/a = 2 we can neglect next-nearest neighbours:

U(R) = 2
~2

ma2
e−2R/a(R/a)−1

(
1− (R/a)−1

2

)
(Petrov et al) and heavy atom oscillation frequency becomes:

ω =

√
ω2
z +

2U ′′(R = 2a)

M
' ωz

(
1 +

U ′′(R = 2a)

Mω2
z

)
This is approximately equivalent to estimating the square of the
frequency shift of the π phonon i.e. (ω2(q=π/d)− ω2

z )/ω2
z which is the

square of the ratio of the phonon bandwidth to ωz and is a dimensionless
measure of the “electron”-phonon coupling strength. We find that, for
V0=25ER and therefore ~ωz=10ER , the shift is ' 0.001M/m, i.e. in
practice there will be no appreciable effect.



Double-well superlattice
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To overcome this difficulty we propose to use a lattice of double wells:

V =
1

2
Mω2
⊥(x2 + y2) + V0 cos2(πz/d) + V1 cos2(2πz/d)

with V ′′= V1 − V0/2 + V 2
0 /16V1 and V ′=V1 + V0/2 + V 2

0 /16V1. We

can: 1) keep d/a ∼O(1) and large V ′ (no tunnelling between double

wells), and 2) tune V ′′to ∼ ER .



Double-well superlattice
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We can restrict to the two lowest energy states E1,2 of the double well
with V ′′ = 20ER and V ′ = 40ER , E3 − E2 ' 14ER � E2 − E1 ' 1ER .

Oscillation in the double well replaces the onsite oscillation so level
splitting ↔ ~ωz .

CDW displacement is large (δ〈z〉 is ' 0.2d). Increases the
“electron”-phonon coupling



Effective spin model

2 state approximation: Left/Right basis ξR,L(R)

ĤBOA =

Nh∑
i=1

−~ωz

(
â†i ,Lâi ,R + â†i ,R âi ,L

)
+ U1n̂i ,R n̂i+1,L

+U2 (n̂i ,R n̂i+1,R + n̂i ,Ln̂i+1,L) + U3n̂i ,Ln̂i+1,R

with

U1 =

∫
d3R1d

3R2|ξi ,R(R1)|2U(R1 − R2)|ξi+1,L(R2)|2

and similarly for U2 and U3.

Two states in each double well - map onto interacting spin-1/2

model using Ŝi≡
(
â†i ,L, â

†
i ,R

)
σ̂ (âi ,L, âi ,R)T , chosen such that Sz

points along the lattice.



Effective spin model

This leads to

Ĥ =

Nh∑
i=1

−~ωz Ŝ
x
i + Us Ŝ

z
i Ŝ

z
i+1 + const

where Us=(2U2 − U1 − U3)/4 and const = (U1 + 2U2 + U3)/4,
which is the Hamiltonian of the quantum Ising model in a purely
transverse field −~ωz (Kivelson, Sachdev, Greiner et al) .



Heavy atom interaction energy (half band)

Half filled band leads to dimerisation of ion lattice. Calculation of
band structure energy:

Each unit cell has two atoms - two bands from det[Ξ(κ)]=0, with

Ξ12 = Ξ∗21 =
e−κr

r
+

Nh/2∑
n=1

(
e i2nk

e−κ(2nd+r)

2nd + r
+ e−2ink e

−κ(2nd−r)

2nd − r

)

Ξ11 = Ξ22 =

(
1

a
− κ
)

+

Nh/2∑
n=1

(
2 cos(2nk)

e−κ2nd

2nd

)
where r is the separation between the two atoms in the unit cell.



Heavy atom interaction energy (general case)
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r=d : single band case; r<d : band split into higher (a) and lower (b)

bands. Interaction energy: Vb(r) for a half-filled band and Vb(r) + Va(r)

for full-filling where Va(b)(r)=
∑

k Ea(b)(k , r) and k∈[−π/2d , π/2d ]. We

found empirically that Vb and Va can be perfectly fitted with the

symmetric (κ+) and antisymmetric (κ−) solutions of κ± ∓ e−κ±r/r=1/a



Effective spin model
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Full band case - ferromagnetic phase: when ~ωz � Us , the spins point
along x and we recover the situation of the simple OL - phonon
frequency ∼ωz . The electron-phonon coupling strength is very small:

(ω2(q = π/d)− ω2
z )/ω2

z ' (Us/~ωz)2

Half band case - antiferromagnetic phase: when ~ωz � Us emergence of
a CDW from a Peierls instability.



Transverse Phonons

Simple experimental implementation: ω⊥ � ωz - single well deep lattice
along z but weak confinement along x , y - effective 1D lattice 1 atom per
site.

Example: Lattice polaron- chain of heavy atoms, 1 light atom - leads to
localisation of light atom wave function
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Beyond the Born-Oppenheimer Approximation

“Ion” motion uses a Hubbard-type (lattice model) description

Strength of this experimental system: can actually simulate
electrons and phonons! - Light atoms are dynamical degrees of
freedom too and not describable as lattice particles.

We can study:
• dynamics of the Peierls instability itself and the

time-dependence of formation of the associated CDW
• “electron”-phonon scattering and transport phenomena, such

as the mobility of electrons in holes in the presence of
umklapp processes

• formation of light atom Cooper pairs due to phonon exchange
and the SSH model

• the lattice polaron problem when only one light atom is
present, propagating along the chain of heavy atoms



Experimental implementation

2D array of 1D tubes with a (super)lattice along each tube

Loading: Either 1) create the molecules with small a in the gas phase
and then load them into a deep OL or 2) load the OL with heavy atoms,
add gas of light atoms, form Feshbach molecules on each site through
collisions.

Half-filled band preparation: start with full band then adiabatically
increase a/d to close gap, lose half of the atoms and then decrease a/d
to return to the gapped case.

CDW measurement (heavy atom dislocations): light scattering off heavy
atoms gives peak with periodicity d but also secondary peak of CDW.

Light atom dislocation: use rf-spectroscopy to see energy distribution and

Peierls gap.



Conclusions

Ideas from few-body physics can bring a new approach to atoms in
OLs

Example: tunable lattice for the light atoms via interactions

Analog of an electron-phonon system

Future work: allow heavy atoms to tunnel, a case without parallel
in solid state systems where the ions are fixed to the lattice sites.


