EFIMOV TRIMERS
UNDER STRONG CONFINEMENT

Pietro Massignan
(Institute of Photonic Sciences, Barcelona)

in collaboration with
Jesper Levinsen (Aarhus Institute of Advanced Studies)
Meera Parish (University College London)
STRONG CONFINEMENT EFFECTS

The dimensionality of the embedding space profoundly affects the system properties.

Examples:

- Anderson localization
- condensation & superfluidity
OUTLINE

- Three identical bosons: 3D vs. 2D
- What happens in between? (quasi-2D)
 - trimer spectra and aspect-ratios
 - hyper-spherical potentials and wave functions
- Experimental consequences
2&3 IDENTICAL BOSONS IN 3D

One universal dimer: \(E_b = -\frac{\hbar^2}{ma^2} \quad (a > 0) \)

For resonant interactions (\(1/a = 0 \)), in principle \(\exists \) an infinite tower of Efimov trimers.

Trimers map onto each other via the scale transformations \(a \to \lambda_0^n a \) and \(E \to \lambda_0^{-2n} E \)

\[\text{Smallest set by short-distance physics} \]

\[\text{Scaling symmetry: continuous (two-body) vs. discrete (three-body)} \]
2&3 IDENTICAL BOSONS IN 2D

Apply harmonic confinement:
\[V(z) = \frac{1}{2} m \omega_z^2 z^2 \]

- CoM decouples
- continuum is shifted
- additional length scale appears

One universal dimer:
\[E_b = \frac{\hbar \omega}{2} - \frac{\hbar^2}{ma_{2D}^2} \]

Petrov & Shlyapnikov PRA 2001
Bloch, Dalibard, Zwerger RMP 2008

Two universal trimers:

-1.27 \[\frac{\hbar^2}{ma_{2D}^2} \]

-16.5 \[\frac{\hbar^2}{ma_{2D}^2} \]

Bruch & Tjon, PRA 1979

Both two- and three-body problems display a continuous scaling symmetry

2D Bose gas experiments: Paris, Innsbruck, Chicago, Monash, …
THREE BOSONS IN QUASI-2D

\[H = \sum_{k,n} (\epsilon_k + n\hbar \omega_z) a_{k,n}^\dagger a_{k,n} + \sum_{k',q} \frac{e^{-(k^2+k'^2)/\Lambda^2}}{\Lambda^2} \langle n_1 n_2 | \hat{g} | n_3 n_4 \rangle a_{q/2+k,n_1}^\dagger a_{q/2-k,n_2} a_{q/2-k',n_3} a_{q/2+k',n_4} \]

the UV cut-off \(\Lambda \) controls the three-body physics at short-distances, and fixes the crossing of the deepest Efimov trimer with the 3-atom continuum (a.)

Trimer wave function: \[\sum_{k_1,k_2} \psi_{k_1,k_2}^{n_1,n_2,n_3} a_{k_1,n_1}^\dagger a_{k_2,n_2}^\dagger a_{-k_1-k_2,n_3} \]

see also the recent work on trimers in a box by M.Yamashita et al., arXiv:1404.7002
atom-dimer vertex:

\[\mathcal{T}^{-1} (k_1, E_3 - \epsilon_{k_1} - N_1\omega_z) \chi_{k_1}^{N_1} = 2 \sum_{k_2, n_{23}, n_{31}} \frac{f_{n_{23}} f_{n_{31}} \langle N_1 n_{23} | N_2 n_{31} \rangle e^{-(k_1^2 + k_2^2)/\Lambda^2}}{E_3 - \epsilon_{k_1} - \epsilon_{k_2} - \epsilon_{k_1+k_2} - (N_1 + n_{23})\omega_z} \chi_{k_2}^{N_2} \]

(the CoM q.number N does not appear in the final formula!)

Wave function for the atom-pair relative motion:

\[\psi(\rho, Z) = R^{3/2} \sum_{k, N} e^{ik\cdot\rho} \phi_N(Z) \chi_k^N \]

where:
- \(\mathcal{T}(k, E) = \frac{2\sqrt{2\pi}}{m} \left\{ \frac{l_z}{a} - \mathcal{F} \left(\frac{-E + k^2/4m}{\omega_L} \right) \right\}^{-1} \)
- \(E_3 \) is the energy measured from the 3-atom continuum
- \(k_i \) is the relative momentum of atom \(i \) w.r.t. the pair \((j, k)\)
- \(n_{ij} \) and \(N_i \) are the h.o. quantum numbers for motion along \(z \) of a pair, and of an atom and a pair

SPECTRUM

“weak” confinement

interaction strength: $|a_-|/a$

confinement strength: $C_z \equiv |a_-|/l_z$

strong confinement

$^{133}\text{Cs: } \omega_z \approx 2\pi \times 5\text{kHz}$

$\omega_z \approx 2\pi \times 30\text{kHz}$

- deepest trimer closely resembles the 3D-one, even for strong confinement
- spectrum of trimers is strongly modified above the 3D continuum
- energy of trimer (measured from the q2D dimer) can be a significant fraction of ω_z even when $|a_-|/a<-1$, so trimers can be quite resistant to thermal dissociation when $T<<\omega_z$
SPECTRUM (2D STYLE)

\[C_z \equiv |a_-|/l_z \]

- the 2D limit is recovered for small and negative scattering lengths ("BCS side" of the resonance)
- the two deepest trimers are stabilized for every negative scattering length
- avoided crossings: superposition of trimers with Efimovian + 2D-like character

\[^{133}\text{Cs}: \quad \omega_z \approx 2\pi \times 5\text{kHz} \]

\[\omega_z \approx 2\pi \times 30\text{kHz} \]
SHAPE OF THE TRIMERS

2D limit

3D regime
HYPERSPHERICAL POTENTIALS

Hyper-spherical expansion:

\[
\Psi(R, \Omega) = \frac{1}{R^{5/2} \sin(2\alpha_k)} \sum_{n=0}^{\infty} f_n(R) \Phi_n(R, \Omega)
\]

Hyper-radial Schrödinger equation:

\[
\left[-\frac{1}{2m} \frac{\partial^2}{\partial R^2} + V(R)\right] f_0(R) = (E_3 + \omega_z) f_0(R)
\]

\[V(R)\] depends on \(l_z/a\), but not on the 3-body parameter.
HYPERSPHERICAL POTENTIALS

• $V(R)$ approaches the 3D potential for $R \ll |a|$ and the 2D potential for $R \gg l_z$
• When $l_z/a \lesssim -2.5$ the potential displays a repulsive barrier with height $\sim 0.15/ma^2$
• Small weight of trimers in the short distance region enhances lifetime
EXPERIMENTAL CONSEQUENCES

- As “2D” experiments are performed at confinements often weaker than 5kHz, we expect this crossover physics to impact three-body correlations in realistic 2D studies on the attractive side of the Feshbach resonance.

- Confinement raises continuum by \(\hbar \omega_z \), so trimer resonance and loss peak disappear for \(l_z / |a_-| \lesssim 2.5 \), i.e., \(C_z \gtrsim 0.4 \).

- When aiming at observing the discrete scaling symmetry: the 2nd trimer signature disappears once \(C_z \gtrsim 0.4/22.7 \), which for \(^{133}\text{Cs}\) corresponds to \(\omega_z \approx 2\pi \times 10\text{Hz} \).

- Similar effects expected for 4-body states (as two tetrabers exist in 2D), or in quasi-1D.

observation of 2\(^{nd}\) resonance in Cs recently reported by Bo Huang et al, PRL (2014)
Efimov trimers under strong confinement

Discrete scaling survives only for $|a_-| \ll |a| \ll l_z$

Deepest trimer remains 3D-like even under strong confinement

Mixing with 2D trimers stabilizes the two deepest trimers for all $a<0$

Small weight at short distance will enhance lifetime (long-lived Efimov trimers?)

Consequences for correlations, quest to observe discrete scaling symmetry
Thanks to:
Vudtiwat Ngampruetikorn (University of Cambridge)
Rudi Grimm, Francesca Ferlaino, Bo Huang & all the LevT team (Innsbruck)

And thank you all for the attention!